大数据预测模型(大数据业务模型什么样)

案例 2019-12-03 19:06:32

大数据分析中,有哪些常见的大数据分析模型

对于互联网平台而言的产品,主要可以分为两大类:商品和服务。想要通过数据分析提高产品的销量,首先要了解哪些数据需要分析?

哪些数据需要分析?

一、运营模块

从用户的消费流程来看,可以划分为四个部分:引流,转化,消费,存留。

流量

流量主要体现在引流环节,按照流量结构可以分为渠道结构,业务结构以及地区结构等。渠道结构,可以追踪各个渠道的流量情况,通过渠道流量占比来分析各渠道的质量。业务结构,根据指定业务对活动的流量进行追踪,观察活动前,中,后流量的变化情况,对活动效果做出评估。

转化率

转化率=期望行为人数/作用总人数。提升转化率意味着更低的成本,更高的利润, 最经典的分析模型就是漏斗模型。

流失率和留存率

通过各个渠道或者活动把用户引流过来,但过一段时间就会有用户流失掉,这部分用户就是流失用户,而留下来的这部分用户就是留存用户。流失可以分为刚性流失,体验流失和竞争流失,虽然流失是不可避免的,但可以根据对流失的分析,做出相应的对策来挽留用户。关于留存,通过观察存留的规律,定位存留阶段,可以辅助市场活动、市场策略定位等,同时还可以对比不同用户、产品的功能存留情况,分析产品价值,及时对产品做出调整。

复购率

复购率可以分为“用户复购率”和“订单复购率”,通过分析复购率,可以进一步对用户粘性进行分析,辅助发现复购率问题,制定运营策略, 同事还可以进行横向(商品、用户、渠道)对比分析, 细化复购率,辅助问题定位。

二、销售模块

销售模块中有大量的指标,包括同环比、完成率、销售排行、重点商品占比、平台占比等等。

三、商品模块

重要指标分析:包括货龄、动销率、缺货率、结构指标、价格体系、关联分析、畅滞销分析等, 用来评判商品价值,辅助调整商品策略

四、用户模块

重点指标分析:包括新增用户数、增长率、流失率、有效会员占比、存留情况等

用户价值分析:可以根据RFM模型,再融入其他个性化参数,对用户进行价值的划分,并针对各等级用户做出进一步分析。

用户画像:根据固有属性、行为属性、交易属性、兴趣爱好等维度,来为用户添加标签与权重,设计用户画像,提供精准营销参考依据。


根据需要分析的数据选择分析模型

一、用户模型

用户模型是一种在营销规划或商业设计上描绘目标用户的方法,经常有多种组合,方便规划者用来分析并设置其针对不同用户所展开的策略。传统的用户模型构建方法有两种:基于访谈和观察构建用户模型(严谨可靠但费时)、临时用户模型(基于行业专家或者市场调查数据构建,快速但不够可靠)。

改进的用户模型构建方法:基于用户行为数据的用户模型

优势:对传统方式进行简化,降低数据分析的门槛;让数据分析更科学、高效、全面,可以更直接地应用于业务增长,指导运营策略。

方法:

1. 整理、收集对用户的初始认知

2. 对用户进行分群

3. 分析用户的行为数据

4. 推测目标动机

5. 对用户进行访谈调查验证

6. 用户模型建立修正

同时,还可以将收集到的用户信息映射成为用户的属性或用户的行为信息,并存储起来形成用户档案;实时关注自身数据的波动,及时做出战略性调整。

二、事件模型

事件模型是用户行为数据分析的第一步,也是分析的核心和基础,它背后的数据结构、采集时机以及对事件的管理是事件模型中的三大要素。

什么是事件?

事件就是用户在产品上的行为,它是用户行为的一个专业描述,用户在产品上所有获得的程序反馈都可以抽象为事件,由开发人员通过埋点进行采集。举个例子:用户在页面上点击按钮就是一个事件。

事件的采集

事件-属性-值的结构:事件(用户在产品上的行为),属性(描述事件的维度),值(属性的内容)

在事件采集过程中,灵活运用事件-属性-值的结构,不仅可以最大化还原用户使用场景,还可以极大地节省事件量,提高工作效率。

采集的时机:用户点击、网页加载完成、服务器判断返回。在设计埋点需求文档时,采集时机的说明尤为重要,也是保证数据准确性的核心。

举个例子:电商销售网页的事件采集

事件的分析

对事件的分析通常有事件触发人数、次数、人均次数、活跃比四个维度的计算。

事件的管理

当事件很多时,对事件进行分组,重要事件进行标注,从而分门别类地管理。同时,可以从产品业务角度将重要的用户行为标注出来,以便在分析时方便、快捷地查找使用常用、重要的事件。

三、漏斗模型

漏斗模型最早起源是从传统行业的营销商业活动中演变而来的,它是一套流程式数据分析方法。

主要模型框架:通过检测目标流程中起点(用户进入)到最后完成目标动作。这其中经历过的每个节点的用户量与留存量,来考核每个节点的好坏,来找到最需要优化的节点。漏斗模型是用户行为状态以及从起点到终点各阶段用户转化率情况的重要分析模型。

四、热图分析 —— 画出用户行为

热图,是记录用户与产品界面交互最直观的工具。热图分析,就是通过记录用户的鼠标行为,并以直观的效果呈现,从而帮助使用者优化网站布局。无论是Web还是App的分析,热图分析都是非常重要的模型。

在实际的使用过程中,常常用几种对比热图的方法,对多个热图进行对比分析,解决问题:

多种热图的对比分析,尤其是点击热图(触摸热图)、阅读热图、停屏热图的对比分析;

细分人群的热图对比分析,例如不同渠道、新老用户、不同时段、AB测试的热图分析等;

深度不同的互动,所反映的热图也是不同的。例如点击热图和转化热图的对比分析;

五、自定义留存分析

关于留存率的概念,在前文中的已经有所介绍。对于产品而言,留存率越高,说明产品的活跃用户越多,转化为忠实用户的比例会越大,越有利于产品变现能力的提升。

自定义留存:基于自己业务场景下用户的留存情况,也即对留存的行为进行自定义。可以通过对初始行为和回访行为进行设定来对留存行为进行自定义。

举个例子:抢到券的用户使用哈罗共享单车的5日留存率

初始行为:抢到券

回访行为:使用哈罗共享单车

六、粘性分析

粘性:以用户视角,科学评估产品的留存能力

通过用户粘性分析,可以了解到一周内或一个月内用户到底有多少天在使用你的产品甚至是某个功能,进一步分析出用户使用产品的习惯。

粘性分析是诸葛io的特色功能之一,其中包括产品整体粘性、功能粘性、粘性趋势以及用户群对比,具体可以参考https://docs.zhugeio.com/advanced/stickiness.html

七、全行为路径分析

全行为路径分析是互联网产品特有的一类数据分析方法,它主要根据每位用户在App或网站中的行为事件,分析用户在App或网站中各个模块的流转规律与特点,挖掘用户的访问或浏览模式,进而实现一些特定的业务用途,如对App核心模块的到达率提升、特定用户群体的主流路径提取与浏览特征刻画,App产品设计的优化等。

在可视化过程中常用的全行为路径模型有两种:

树形图:以树形结构体现用户的行为路径

太阳图:以环形图体现用户的行为路径

上图中,每一环代表用户的一步,不同的颜色代表不同的行为,同一环颜色占比越大代表在当前步骤中用户行为越统一,环越长说明用户的行为路径越长。

八、用户分群模型

用户分群即用户信息标签化,通过用户的历史行为路径、行为特征、偏好等属性,将具有相同属性的用户划分为一个群体,并进行后续分析。

基于用户行为数据的分群模型:当回归到行为数据本身,会发现对用户的洞察可以更精细更溯源,用历史行为记录的方式可以更快地找到想要的人群。

四个用户分群的维度:

用户属性:年龄、性别、城市、浏览器版本、系统版本、操作版本、渠道来源等;

活跃于:通过设置活跃时间,找到指定之间段内的活跃用户;

做过/没做过:通过用户是否进行某行为,分析用户与产品交互的“亲密度”;

新增于:通过设置时间段,精确筛选出新增用户的时间范围;

如何提高产品销量是一个综合性的问题,需要结合多种模型进行数据分析,以上内容是对一些知识的归纳,希望能够对您有所帮助。


大数据分析领域有哪些分析模型
数据角度的模型一般指的是统计或数据挖掘、机器学习、人工智能等类型的模型,是纯粹从科学角度出发定义的。
1. 降维
在面对海量数据或大数据进行数据挖掘时,通常会面临“维度灾难”,原因是数据集的维度可以不断增加直至无穷多,但计算机的处理能力和速度却是有限的;另外,数据集的大量维度之间可能存在共线性的关系,这会直接导致学习模型的健壮性不够,甚至很多时候算法结果会失效。因此,我们需要降低维度数量并降低维度间共线性影响。
数据降维也被成为数据归约或数据约减,其目的是减少参与数据计算和建模维度的数量。数据降维的思路有两类:一类是基于特征选择的降维,一类是是基于维度转换的降维。
2. 回归
回归是研究自变量x对因变量y影响的一种数据分析方法。最简单的回归模型是一元线性回归(只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示),可以表示为Y=β0+β1x+ε,其中Y为因变量,x为自变量,β1为影响系数,β0为截距,ε为随机误差。
回归分析按照自变量的个数分为一元回归模型和多元回归模型;按照影响是否线性分为线性回归和非线性回归。
3. 聚类
聚类是数据挖掘和计算中的基本任务,聚类是将大量数据集中具有“相似”特征的数据点划分为统一类别,并最终生成多个类的方法。聚类分析的基本思想是“物以类聚、人以群分”,因此大量的数据集中必然存在相似的数据点,基于这个假设就可以将数据区分出来,并发现每个数据集(分类)的特征。
4. 分类
分类算法通过对已知类别训练集的计算和分析,从中发现类别规则,以此预测新数据的类别的一类算法。分类算法是解决分类问题的方法,是数据挖掘、机器学习和模式识别中一个重要的研究领域。
5. 关联
关联规则学习通过寻找最能够解释数据变量之间关系的规则,来找出大量多元数据集中有用的关联规则,它是从大量数据中发现多种数据之间关系的一种方法,另外,它还可以基于时间序列对多种数据间的关系进行挖掘。关联分析的典型案例是“啤酒和尿布”的捆绑销售,即买了尿布的用户还会一起买啤酒。
6. 时间序列
时间序列是用来研究数据随时间变化趋势而变化的一类算法,它是一种常用的回归预测方法。它的原理是事物的连续性,所谓连续性是指客观事物的发展具有合乎规律的连续性,事物发展是按照它本身固有的规律进行的。在一定条件下,只要规律赖以发生作用的条件不产生质的变化,则事物的基本发展趋势在未来就还会延续下去。
7. 异常检测
大多数数据挖掘或数据工作中,异常值都会在数据的预处理过程中被认为是“噪音”而剔除,以避免其对总体数据评估和分析挖掘的影响。但某些情况下,如果数据工作的目标就是围绕异常值,那么这些异常值会成为数据工作的焦点。
数据集中的异常数据通常被成为异常点、离群点或孤立点等,典型特征是这些数据的特征或规则与大多数数据不一致,呈现出“异常”的特点,而检测这些数据的方法被称为异常检测。
8. 协同过滤
协同过滤(Collaborative Filtering,CF))是利用集体智慧的一个典型方法,常被用于分辨特定对象(通常是人)可能感兴趣的项目(项目可能是商品、资讯、书籍、音乐、帖子等),这些感兴趣的内容来源于其他类似人群的兴趣和爱好,然后被作为推荐内容推荐给特定对象。
9. 主题模型
主题模型(Topic Model),是提炼出文字中隐含主题的一种建模方法。在统计学中,主题就是词汇表或特定词语的词语概率分布模型。所谓主题,是文字(文章、话语、句子)所表达的中心思想或核心概念。
10. 路径、漏斗、归因模型
路径分析、漏斗分析、归因分析和热力图分析原本是网站数据分析的常用分析方法,但随着认知计算、机器学习、深度学习等方法的应用,原本很难衡量的线下用户行为正在被识别、分析、关联、打通,使得这些方法也可以应用到线下客户行为和转化分析。
大数据分析方法有哪些,大数据分析方法介绍

描述型分析:最常见的分析方法。在业务中,这种方法向数据分析师提供了重要指标和业务的衡量方法。例如,每月的营收和损失账单。数据分析师可以通过这些账单,获取大量的客户数据。了解客户的地理信息,就是“描述型分析”方法之一。利用可视化工具,能够有效的增强描述型分析所提供的信息。

诊断型分析:通过评估描述型数据,诊断分析工具能够让数据分析师深入地分析数据,钻取到数据的核心。良好设计的BI dashboard能够整合:按照时间序列进行数据读入、特征过滤和钻取数据等功能,以便更好的分析数据。

预测型分析:预测型分析主要用于进行预测。事件未来发生的可能性、预测一个可量化的值,或者是预估事情发生的时间点,这些都可以通过预测模型来完成。

指令型分析:指令模型基于对“发生了什么”、“为什么会发生”和“可能发生什么”的分析,来帮助用户决定应该采取什么措施。通常情况下,指令型分析不是单独使用的方法,而是前面的所有方法都完成之后,最后需要完成的分析方法。