高达最大的模型是多大的?最大的是HY2M级(复合材料,好像是有金属盔甲),比例为1:12,高度一般在一米五吧。据说极其昂贵,售价一般在1W~2W RMB,而且还限量发行,据说只有1000套。完全属于奢侈品。
然后就是PG级模型,统统是1:60的比例,一般模型店里都得有个10个左右压店吧...我那的模型店里才6个PG。
至于GP03D个大纯粹是因为原本尺寸就超大。原作GP03D的尺寸在140M左右,而且因此也只出了HGUC版本的...按照1:144比例,大约是一米长。我这里的模型店展示柜里有成品,说实话,一小半长度都在那个米加粒子炮上了...
世界上最大的高达是1:1的,富士山下一个游乐场里有一个(是个游乐设施),香港有个灯笼做的,还有一个完全再现内部结构,由富野大师亲自监督并由阿姆罗的声优古谷彻搭乘过的高达RX-78-2。至于这个神物在哪真是忘了。
中国最大的模型公园是什么方特欢乐世界。
在安徽芜湖。 投资逾70亿元、总占地300万平方米,作为目前中国内地最大的单体主题公园,共有12个主题区,每一个主题园区又有一个或多个与该主题园区相关的主题项目组成,各种主题项目超过50个,不同的主题景点,均采用声、光、电等高新技术手段,让游客体验星际飞行、极限飞跃、恐龙危机等奇幻之旅。 主题公园内将建成中国国内最大的悬挂式过山车,亚洲最高的球形银幕,并且建设一个初步命名为“海螺湾”的海螺外壳造型的大型电影院,堪称“中国内地版的迪士尼乐园”! 1、太空世界 一个以现代和未来航空为主题的景区,在这里一切都以未来、科幻、太空为主题,巨大的火箭耸立在广场中央,太空中遥远的神秘星球出现在地面上,让您可以近距离接触,将您带入浩淼宇宙,亲身体验凌空飞翔的奇妙感受。大型项目:星际航班、太空山、飞越极限。 大型项目星际航班:拥有高度仿真动作的动感平台和大型球幕电影情节紧密配合,让您体验一次遥远太空世界中的高速飞行。 大型项目太空山:一个集教育性、娱乐性、知识性于一体的大型主题太空科技展馆,运用多种高科技表演展示技术和轻松娱乐的形式,让您了解太 空,增长知识,乐在其中。 大型项目飞越极限:集巨型球幕电影、大型机械悬挂系统、现代仿真特技等多种高科技手段于一身,带领观众翱翔于世界各地,俯瞰奇观美景。 2、神秘河谷 一个惊险刺激的历险主题景区,游客仿佛置身与浓密的雨林之中,到处都有废弃的古代玛雅人建筑,其中高大的玛雅金字塔耸立在其中,这个古老的建筑已经被丛林所包裹,石块碎裂,石柱坍塌,高大的金字塔内部就是最有特色的项目-迷失世界。在这里游客可以乘船穿越巨大而神秘的金字塔,进入一个危机四伏的考古现场 3、 维苏威火山 火山喷发这一自然界的奇观将出现在景区中央,巨大的山体仿佛是地底底岩浆冷却而成。夜晚中,火山口底光芒照耀星空,隆隆的火山声响彻天际。大型项目:维苏威云霄飞车。 维苏威云霄飞车:轨道车将高速穿梭在蜿蜒盘旋的火山上,轨道上烟雾弥漫、险象环生。巨大的轰鸣声在山体中回荡,游客的欢笑和尖叫此起彼伏。 4、 大都会博物馆 现代大都市的完全呈现,宏伟的纽约大都会博物馆、繁华的曼哈顿大街、自由女神像等等,让你目不暇接。大型项目:恐龙危机。 大型项目恐龙危机:一个当今国际顶级的大型4D Ride项目,结合多个虚实场景、高速动感车、灾难仿真特技、立体数字影视等先进技术。将带您进入一个恐龙肆虐的城市,体验惊险刺激的生死之旅。 5、 海螺湾 一个可爱清新的海洋世界,色彩斑斓,充满可通特色,人们穿行在海底美丽的珊瑚噍群间,欣赏一场海洋动物举办的嘉年华,完全沉侵在欢乐的海洋中。大型项目:海螺湾剧场。 大型项目海螺湾剧场:一个结合多个播放立体影片的大型银幕、亦真亦幻的实物景观和大型机械动作模型的环境4D剧场,多种表演手段的运用,让您在欢乐美丽的海底世界观赏到海底居民的盛大表演。 6、儿童王国 一个卡通和动感的世界。这里由众多受儿童和青少年喜爱的游乐项目,红金龙过山车,UFO,欢乐宫,儿童过山车,儿童Dark Ride,自旋滑车,海盗船,双层转马,模拟攀爬……构成了青少年和孩子们的欢乐海洋。 是亚洲最大的主题公园 也是中国投资最多的游乐园 (等上海的欢乐谷建好就不一定了。)
标准模型"当中最大的问题是什么标准宇宙学模型中的几个致命问题(转自小木虫)
一. 宇宙学原理的提出
如果你用‘宇宙学原理’这个关键词在互联网上进行搜索,会得到许多各种各样的不同答案。它们大部分并不是爱因斯坦在进行宇宙学研究时引进的宇宙学原理的原版,而是后来其他人对宇宙学原理的理解。我这里所要讨论的宇宙学原理是爱因斯坦在用他的广义相对论引力方程进行宇宙学研究时所提出的宇宙学原理。
在爱因斯坦用他的广义相对论引力方程进行宇宙学研究时,天文学家对宇宙的认识还非常有限。当时天文学家还不知道在银河系之外还存在有大量和银河系类似的其它星系,因此爱因斯坦也以为由大量恒星和‘星云’组成的银河系就是整个宇宙,这个宇宙是静态的。爱因斯坦提出宇宙学原理这个假设,并不是根据现在我们所知道的宇宙结构实际情况简化后得出的理想化近似假设,主要还是数学上的原因。因为广义相对论的引力方程是一个二阶偏微分方程组,数学上无法直接对这个二阶偏微分方程组进行求解。引进宇宙学原理的主要目的和作用就是使广义相对论的引力方程可以得到极大的得到简化,得到所谓的宇宙学方程。这个宇宙学方程可以从数学上求解。
爱因斯坦在引进宇宙学原理后,虽然简化得到了宇宙学方程,但爱因斯坦仍然无法得到他所希望得到的宇宙应当是静态的数学解,于是爱因斯坦认为在他这样得到的宇宙学方程中还应当加上了一项‘宇宙学常数’,这样爱因斯坦才有可能从他的宇宙学方程中得到满足他的静态宇宙学模型的解。
后来弗里德曼从数学上证明,在爱因斯坦得到的宇宙学方程中不必加上宇宙学常数,方程仍然可以有解,但是弗里德曼得到的这个宇宙学方程的解,要求宇宙不是静止的。宇宙应当或者是在膨胀,或者是在收缩。在1929年天文学家哈勃发现哈勃定律后,学者们认为宇宙应当是在膨胀。因此在后来很长一段时间中,宇宙学常数被大多数学者,包括爱因斯坦自己,所抛弃。1998年以后由于所谓‘宇宙加速膨胀’的发现,学者们这才又想起要把宇宙学常数请回来。
从上面的讨论我们可以看到,标准宇宙学模型中宇宙学方程虽然是以广义相对论的引力方程为基础,但并不等于广义相对论。宇宙学原理这个假设在宇宙学方程的推导中起了非常重要的作用。广义相对论的引力方程的正确性并不能保证宇宙学原理假设是合理的。后来标准宇宙学模型虽然成了宇宙学研究中的主流理论,但宇宙学家心里也明白,宇宙学原理假设是否成立,仍然是标准宇宙学模型是否能够成立的前提基础,现有的天文观测并不能令人信服地证明宇宙学原理是合理的。现在已经实际观测到的结果表明,在各种尺度上宇宙中的物质分布并不是均匀各向同性。于是有些宇宙学家为了证明宇宙学原理的合理性者就提出,对‘宇宙中的物质分布是均匀各向同性’应当从‘宇宙学尺度’上去理解,即物质分布为均匀各向同性是在‘宇宙学尺度’上成立。
对‘宇宙物质分布的均匀各向同性是在宇宙学尺度上成立’这个说法,关键是对宇宙学尺度的理解。今天人们通常宇宙中把10Mpc 以上的结构称为宇宙的大尺度结构,目前可以精确地观测到的宇宙的范围大约是100Mpc。更大尺度上的观测结果还不是十分明确的。近20多年来,宇宙大尺度结构的观测研究取得了重大进展。它是用各星系的光谱线红移可以得出它们的‘退行’速度,再用‘哈勃定律’求出距离,这样我们可以画出星系分布的三维图。有趣的是,有迹象表明,星系在大尺度上的分布呈泡沫状。即在宇宙中有许多几乎看不到星系的空洞区域(Void),大部分星系则聚集在这些空洞的壁上,呈纤维状或片状结构。它的二维示意图形如图1。有学者把这些纤维状或片状结构称为宇宙中的‘长城’(The great wall),下面图1是引自在互联网上查到的国家天文台邹振隆研究员2006年11月1日制作的PPT课件,题目为‘宇宙的大尺度结构’。图2画的是我们银河系所在的‘本星系群’(靠近中央的粉线所指小白斑点)周围的星系团在三维空间中的分布图,标尺是1Mpc,即百万“秒差距”(1秒差距=3.26光年)。此图的所有星系团组成“本超星系团”(local cluster),其中心大致在室女星系,而本星系群离中心约1800万‘秒差距’。
图1宇宙大尺度结构的二维示意图
图2本超星系团的三维空间分布图
斑点猫 (站内联系TA)
彼时之观测乃此时观测此之近似
twxz (站内联系TA)
二. 宇宙学原理的证明1
宇宙学原理假设是否成立,是标准宇宙学模型是否能够成立的前提基础,现有的有关宇宙中物质分布的天文观测并不能令人信服地证明宇宙学原理是合理的。于是宇宙学家和理论物理学家想尽其它办法从其它方面来证明宇宙学原理是成立的。
从现在对宇宙物质分布的观测结果(见前面帖子的两张宇宙空间星系分布图),我们可以看到,直接用现在已有的天文观测结果很难证明宇宙学原理是正确的。于是有些学者就认为,宇宙微波背景辐射的分布是均匀各向同性,而宇宙微波背景辐射是宇宙早期大爆炸的遗迹,因此宇宙微波背景辐射的分布均匀各向同性说明,宇宙中物质至少在宇宙的早期是均匀各向同性分布。如果承认宇宙微波背景辐射是宇宙大爆炸的遗迹,同时只考虑宇宙微波背景辐射的强度分布,则认为宇宙中物质至少在宇宙早期是均匀各向同性分布似乎还勉强说得过去。但如果我们深入研究宇宙微波背景辐射分布的温度谱,科学家们从WMAP小组发布的数据中发现,四极矩和八极矩的数值偏低,而且四极矩和八极矩的轴,几乎都指向室女座方向。这破坏了宇宙学原理中的各向同性假设。
虽然经过了五六年的艰苦研究,李惕培和刘浩等人发现,由他们自己编写的数据分析程序得到的温度谱和WMAP有所不同,其中最大的不同在于他们发现温度谱的四极矩几乎消失了,而八极矩也有显著的减弱。从这里我们可以看到,WMAP观测数据的处理和所得到结果之间的关系多么密切,对我们如何理解微波背景辐射的性质有多么重要的意义。数据处理时所采用的方法的某些微小变化,可能会产生‘差之毫厘,谬以千里’的错误结果,从而误导我们对微波背景辐射性质的理解。
美国阿拉巴马大学(UAH)以Lieu博士为首的科学家们(其中包括有我国清华大学物理系协议年薪特聘教授张双南教授)2006年9月1日在《Astrophysical Journal》上发表了他们对NASA的威尔金森微波各向异性探针(WMAP)探测到的31个星系团宇宙微波辐射数据进行深入分析的结果。分析的结果显示,大约只有四分之一被预言应当存在S-Z效应的星系团区域确实存在S-Z效应,而其它大约四分之三被预言应当存在S-Z效应的星系团区域却不存在SZ效应,这和在整个天际随机观测到SZ效应的几率大致相当。Lieu博士他们认为,这个结果表明,我们所观测到的微波背景辐射可能不是来自这些星系团的后方。因此,对‘微波背景辐射是宇宙大爆炸遗留的余烬’的理论提出质疑,认为微波背景辐射不能作为宇宙大爆炸理论的依据。
从这里我们可以看出,用宇宙微波背景辐射来证明宇宙学原理假设是合理的这个做法很难令人信服。更何况爱因斯坦在引进宇宙学原理时并不知道,也没有预见宇宙微波背景辐射的存在。用宇宙微波背景辐射来证明宇宙学原理假设是合理的这个做法只是后人为了证明标准宇宙学模型而作的努力。
twxz (站内联系TA)
三. 宇宙学原理的证明2
有些学者认为,宇宙学原理是哥白尼原理在宇宙学尺度上的推广和发展。哥白尼经过长期的天文观测和研究,创立了当时更为科学的宇宙结构体系——日心说,以此否定了在西方统治达一千多年的地心说。哥白尼日心说的本质是:用日心坐标系代替地心坐标系;只有用日心坐标系,我们才能更好地描述所观测到的太阳系中行星的运动。
随着天文观测技术的发展,我们已经知道太阳是绕银河系中心转动。因此用银心坐标系代替日心坐标系,能更好地描述银河系中恒星的空间运动。但是如果用银心坐标系来描述太阳系中行星的运动,则是如同高射炮打蚊子,大材小用。在更大尺度的宇宙结构中,如由大量星系组成的星系团,存在有一个星系团结构中心。用星系团心坐标系,可以更好地描述星系团中成员星系的运动。现在学者们公认的发现暗物质的鼻祖茨维基(F.Zwicky), 1933年从后发星系团中推断出暗物质存在进行的理论计算,就是用‘后发星系团心’坐标系进行计算。2003年WMAP卫星对微波背景辐射进行了更深入的观测研究。观测的结果发现,微波背景辐射温度谱中存在有偶极矩成分。WMAP卫星观测结果中这个偶极矩成分,被解释成是由观测者的空间运动导致的多普勒效应所形成的。计算结果是,地心绕太阳转动的速度大约是 30 km/s,太阳绕银心转动的速度是 220 km/s,银河系中心的空间运动的速度是547 km/s,运动的方向指向银经266度,银纬29度。因此利用对宇宙微波背景辐射的观测,可以建立起一个比银心坐标系更精确的坐标系。
这些事实我们可以看到,从地心说到日心说的转变只能说明人类对宇宙层次成团结构认识的范围在扩大。如果火星上有像人类这样智能生物,他们最初观测天文所用的坐标系应当是火星心坐标系,他们中哥白尼式的火星人也会发现日心坐标系。因此在太阳系中,哥白尼原理的含义应当是:地心坐标系和火星心坐标系是等价的。不存在哪一个坐标系更好。如果存在太阳系外的外星人,他们在进行观测天文时也会发现‘外星心’坐标系。在这个宇宙尺度上,哥白尼原理的含义应当是:‘外星心’坐标系应当和日心坐标系是等价的。在宇宙尺度上,天体的空间分布存在不同层次成团结构。在不同层次成团结构中,都存在有各自的成团结构的中心。因此在宇宙尺度上,哥白尼原理的含义应当是:在同一层次天体的成团结构中,不同成团结构中心是等价的。并不是‘宇宙中的物质分布是均匀各向同性’。
从逻辑上看,如果宇宙中的物质分布是均匀各向同性,我们可以由此得出宇宙没有中心这个哲学结论。但是从宇宙没有中心这个哲学概念出发,我们并不能得出宇宙中物质分布必须是均匀各向同性这个结论。从这些事实出发,哥白尼原理‘我们人类所在的地球并不是整个宇宙的中’它的主要意义是哲学问题而不是物理问题。我们并不能把哥白尼原理中‘我们人类所在的地球并不是整个宇宙的中’和宇宙学原理‘宇宙中的物质分布是均匀各向同性’联系起来。
因此现在一些学者在发现无法通过天文观测结果证明宇宙学原理中有关物质发布是均匀各向同性假设的合理性后,就把宇宙学原理说成是哥白尼原理的延伸和发展,完全是想利用哥白尼原理在反对地心说中的成功,为并没有实际根据的宇宙学原理这个假设披上在哲学上是合理的外衣。
四. 引进宇宙学原理导致的错误
1.非径向运动作用的丢失
引进宇宙学原理导致的最大错误是在引进宇宙学原理后,宇宙学方程中只有时间t和尺度R两个变量。因此在标准宇宙学模型所采用的共动坐标系中,宇宙学方程只能考虑星系相对于共动坐标系原点的径向运动,星系在其它方向运动产生的影响在宇宙学方程中无法表现出来。实际天文观测表明,几乎所有星系在共动坐标系中都存在有非径向运动。宇宙中星系的运动状态发生变化不但受到引力中心对该星系径向引力作用的影响(在宇宙学原理假设下,对该星系引力相互作用只能发生在径向),该星系在非径向的初始运动情况,也会对星系运动状态的变化产生影响。
假设两个星系原来相对静止,则它们在引力作用下将相互吸引而靠近。如果它们原来存在有和它们之间引力方向一致的相对远离的初始运动,则它们在引力作用下将继续相对远离运动,但运动速度变小。也就是说在这种情况下,天体系统只能塌缩或减速膨胀。如果它们原来存在有和它们之间引力方向不一致的相对运动,则它们将在引力作用下发生相互绕转运动。天体系统可以既不塌缩也不减速膨胀。由此可见,天体原来存在有和引力方向不一致的初始运动的情况,也会对星系运动状态的变化产生影响。但是在引进宇宙学原理后的宇宙学方程中无法描述这种宇宙的演化过程。非引力方向的初始运动状态对天体运动状态产生的作用完全丢失。因此宇宙学方程并不能完整地描述天体在引力作用下的运动变化。只能描述天体在没有非引力方向初始运动的情况下,在引力的作用下天体的减速膨胀和塌缩运动。1998年以前,标准宇宙学模型就是这样描述宇宙的演化过程。
2.Seeliger佯谬
主张标准宇宙学模型的学者们认为,牛顿力学不适合进行宇宙学研究还有一个理由就是用牛顿力学进行宇宙学研究时,会导致引力发散问题。这就是所谓Neumann-Zeeliger疑难问题。俞允强教授在‘热大爆炸宇宙学’一书中,也讨论了这个问题,并把它称为是Seeliger佯谬。
从俞允强教授在‘热大爆炸宇宙学’一书中对这个问题的讨论我们可以看到,引力发散问题的出现,完全是在计算宇宙空间任意一点的引力强度时,采用了宇宙学原理‘宇宙中物质分布是均匀和各向同性’这个不合理的假设所导致的结果。在实际宇宙中物质分布在各种尺度上都有‘成团结构’。在物质有‘成团结构’分布的宇宙空间中任何一点,由这些有物质所产生的引力场强度,都有可以通过计算得到确定值,不存在什么引力发散问题。
由此可见Neumann-Zeeliger疑难中的所谓引力发散问题,完全是宇宙学原理这个不合理的假设所导致的结果,和牛顿力学不适合进行宇宙学研究问题无关。
3.无法说明星系本动的存在
在标准宇宙学模型中认为,宇宙空间中不存在绝对惯性系,天体在宇宙空间中的运动要用共动坐标系来描述。根据宇宙学原理,宇宙没有中心,所有星系都是等权的,宇宙中任何一个星系都可以作为共动坐标系的原点,我们所处的银河系也不应当例外。因此位于银河系中的天文学家不可能观测到银河系在宇宙空间中存在运动。
但是现代对宇宙微波背景辐射的精确观测表明,由于观测的宇宙微波背景辐射存在偶极矩,我们可以测定银河系相对于宇宙微波背景辐射有一个相对运动。根据所有星系都是等权的原理,所有其它星系也应当存在这种情况。因此有人认为可以用宇宙微波背景辐射定义一个绝对惯性参考系。标准宇宙学模型的理论认为,用宇宙微波背景辐射定义的参考系是和宇宙一起膨胀的参考系,是共动坐标系。星系相对于宇宙微波背景辐射的运动是相对于共动坐标系的运动。相对于共动坐标系的运动被宇宙学家称为星系的‘本动’。
对于星系本动的成因,标准宇宙学模型理论似乎没有给出明确的解释。只有一部分学者把宇宙中大量存在的星系类比成理想气体的分子,把星系的本动看成是理想气体分子的无规则运动。如果我们对每个具体星系的初始速度和所处的成团结构中的物质分布在宇宙尺度上,通过观测加以确定,则它们的运动状态和演化完全通过天体力学的理论公式计算得到。因此把星系的本动类比成理想气体的分子的无规则运动并不合理。因此星系本动的存在只能说明宇宙学原理假设是错误的。
利用宇宙学原理推导出宇宙学方程没有必要
爱因斯坦的宇宙学方程是广义相对论的引力方程在引进宇宙学原理后简化得到的,如果宇宙学方程可以描述宇宙中天体的运动,广义相对论的引力方程应当可以更好地描述宇宙中天体的运动。广义相对论的引力方程是牛顿的引力运动方程在高速和强场的情况下的推广和发展,在低速和弱场的条件下,广义相对论的引力方程和牛顿的引力运动方程是一致的。由于在宇宙学尺度上,低速和弱场的条件总是可以得到满足。因此用牛顿的引力运动方程应当也可以描述宇宙中天体的运动。牛顿的引力运动方程对太阳系中行星的运动的精确描述就是一个很好的证明。‘暗物质’的存在也是可以根据牛顿的引力运动方程推导出来。
爱因斯坦之所以要引进宇宙学原理推导出宇宙学方程,完全是由于数学上难以直接对广义相对论的引力方程进行求解这个数学上的原因,并不是广义相对论引力方程无法描述天体运动。广义相对论的引力方程之所以能够得到简化,完全是由于引进了宇宙学原理这个不合理的假设。如果引进比宇宙学原理更合理的其它假设,同时又在数学上能够对广义相对论的引力方程求得合理的解,则这样得到的数学解同样能够描述宇宙中的天体运动。有些宇宙学家和理论物理学家认为,在宇宙学尺度上只有宇宙学方程才能描述宇宙中的天体运动,广义相对论引力方程的其它解和牛顿引力方程一样,无法描述宇宙中的天体运动,我认为是一种误解。
实际天文观测证明,宇宙中物质的分布并不是均匀分布的,而是有层次成团结构的。在这些不同层次成团结构中,物质分布基本上是球
对称的,每一个成团结构中都存在一个引力中心。应当强调的是,在宇宙的各个层次成团结构中,在处理某一个层次的成团结构中的天体运动时,我们只需要考虑这个层次成团结构中天体所产生的球
对称引力场。相邻的其它成团结构中的天体对我们所考虑的成团结构中的引力场基本上可以忽略不计。以太阳系