建立模型的步骤(建立二次函数模型,解决实际问题的一般步骤是什么)

案例 2019-12-04 08:25:50

论述计量经济学建立模型的基本步骤
一、理论模型的建立
⑴ 确定模型包含的变量
1.根据经济学理论和经济行为分析。
例如:同样是生产方程,电力工业和纺织工业应该选择不同的变量,为什么?

2.在时间序列数据样本下可以应用Grange统计检验等方法。
例如,消费和GDP之间的因果关系。

3.考虑数据的可得性。
注意因素和变量之间的联系与区别。

4.考虑入选变量之间的关系。
要求变量间互相独立。

⑵ 确定模型的数学形式
利用经济学和数理经济学的成果
根据样本数据作出的变量关系图
选择可能的形式试模拟

⑶ 拟定模型中待估计参数的理论期望值区间(符号、大小、 关系)
例如:ln(人均食品需求量)=α+βln(人均收入)+γln(食品价格) +δln(其它商品价格)+ε
其中α 、β、γ、δ的符号、大小、 关系

二、样本数据的收集

⑴ 几类常用的样本数据
时间序列数据
截面数据
虚变量离散数据
联合应用

⑵ 数据质量
完整性
准确性
可比性
一致性

三、模型参数的估计
⑴ 各种模型参数估计方法
⑵ 如何选择模型参数估计方法
⑶ 关于应用软件的使用

四、模型的检验
⑴ 经济意义检验
根据拟定的符号、大小、关系
例如:ln(人均食品需求量)=-2.0-0.5ln(人均收入)-4.5ln(食品价格) +0.8ln(其它商品价格)
ln(人均食品需求量)=-2.0+0.5ln(人均收入)-4.5ln(食品价格)+0.8ln(其它商品价格)
ln(人均食品需求量)=-2.0+0.5ln(人均收入)-0.8ln(食品价格) +0.8ln(其它商品价格)

⑵ 统计检验
由数理统计理论决定,包括拟合优度检验、总体显著性检验、变量显著性检验

⑶ 计量经济学检验
由计量经济学理论决定,包括异方差性检验、序列相关性检验、共线性检验

⑷ 模型预测检验
由模型的应用要求决定,包括稳定性检验(扩大样本重新估计)、预测性能检验(对样本外一点进行实际预测)

五、计量经济学模型成功的三要素:理论、数据、方法
计算机财务管理模型的建立步骤
1、财务报告分析模型
2、投资决策分析模型
3、流动资金管理模型
4、筹资决策分析模型
5、销售预测利润管理模型
6、财务计划编制模型
7、基本知识
8、退出
建立数学模型流程
1)建模准备
数学建模是一项创新活动,它所面临的课题是人们在生产和科研中为了使认识和实践进一步发展必须解决的问题。“什么是问题?问题就是事物的矛盾,哪里有没解决的矛盾,哪里就有问题”。因此发现课题的过程就是分析矛盾的过程贯穿生产和科技中的根本矛盾是认识和实践的矛盾,我们分析这些矛盾,从中发现尚未解决的矛盾,就是找到了需要解决的实际问题,如果这些实际问题需要给出定量的分析和解答,那么就可以把这些实际问题确立为数学建模的课题,建模准备就是要了解问题的实际背景,明确建模的目的,掌握对象的各种信息,弄清实际对象的特征,情况明才能方法对。

(2)建模假设
作为课题的原型都是复杂的、具体的,是质和量、现象和本质、偶然和必然的统一体,这样的原型,如果不经过抽象和简化,人们对其认识是困难的,也无法准确把握它的本质属性。建模假设就是根据实际对象的特征和建模的目的,在掌握必要资料的基础上,对原型进行抽象、简化,把那些反映问题本质属性的形态、量及其关系抽象出来,简化掉那些非本质的因素,使之摆脱原型的具体复杂形态,形成对建模有用的信息资源和前提条件,并且用精确的语言作出假设,是建模过程关键的一步。对原型的抽象、简化不是无条件的,一定要善于辨别问题的主要方面和次要方面,果断地抓住主要因素,抛弃次要因素,尽量将问题均匀化、线性化,并且要按照假设的合理性原则进行,假设合理性原则有以下几点:
①目的性原则:从原型中抽象出与建模目的有关的因素,简化掉那些与建模目的无关的或关系不大的因素。
②简明性原则:所给出的假设条件要简单、准确,有利于构造模型。
③真实性原则:假设条件要符合情理,简化带来的误差应满足实际问题所能允许的误差范围。
④全面性原则:在对事物原型本身作出假设的同时,还要给出原型所处的环境条件。

(3)模型建立
在建模假设的基础上,进一步分析建模假设的各条件首先区分哪些是常量,哪些是变量,哪些是已知量,哪些是未知量;然后查明各种量所处的地位、作用和它们之间的关系,建立各个量之间的等式或不等式关系,列出表格、画出图形或确定其他数学结构,选择恰当的数学工具和构造模型的方法对其进行表征,构造出刻画实际问题的数学模型。

在构造模型时究竟采用什么数学工具,要根据问题的特征、建模的目的要求以及建模者的数学特长而定 可以这样讲,数学的任一分支在构造模型时都可能用到,而同一实际问题也可以构造出不同的数学模型,一般地讲,在能够达到预期目的的前提下,所用的数学工具越简单越好。

在构造模型时究竟采用什么方法构造模型,要根据实际问题的性质和建模假设所给出的建模信息而定,就以系统论中提出的机理分析法和系统辨识法来说,它们是构造数学模型的两种基本方法。机理分析法是在对事物内在机理分析的基础上,利用建模假设所给出的建模信息或前提条件来构造模型;系统辨识法是对系统内在机理一无所知的情况下利用建模假设或实际对系统的测试数据所给出的事物系统的输入、输出信息来构造模型。随着计算机科学的发展,计算机模拟有力地促进了数学建模的发展,也成为一种构造模型的基本方法,这些构模方法各有其优点和缺点,在构造模型时,可以同时采用,以取长补短,达到建模的目的。

(4)模型求解
构造数学模型之后,再根据已知条件和数据分析模型的特征和结构特点,设计或选择求解模型的数学方法和算法,这其中包括解方程、画图形、证明定理、逻辑运算以及稳定性讨论,特别是编写计算机程序或运用与算法相适应的软件包,并借助计算机完成对模型的求解。

(5)模型分析
根据建模的目的要求,对模型求解的数字结果,或进行变量之间的依赖关系分析,或进行稳定性分析,或进行系统参数的灵敏度分析,或进行误差分析等。通过分析,如果不符合要求,就修改或增减建模假设条件,重新建模,直到符合要求;通过分析如果符合要求,还可以对模型进行评价、预测、优化等。

(6)模型检验
模型分析符合要求之后,还必须回到客观实际中去对模型进行检验,用实际现象、数据等检验模型的合理性和适用性,看它是否符合客观实际,若不符合,就修改或增减假设条件,重新建模,循环往复,不断完善,直到获得满意结果 目前计算机技术已为我们进行模型分析、模型检验提供了先进的手段,充分利用这一手段,可以节约大量的时间、人力和物力。

(7)模型应用
模型应用是数学建模的宗旨,也是对模型的最客观、最公正的检验 因此,一个成功的数学模型,必须根据建模的目的,将其用于分析、研究和解决实际问题,充分发挥数学模型在生产和科研中的特殊作用。

以上介绍的数学建模基本步骤应该根据具体问题灵活掌握,或交叉进行,或平行进行,不拘一格地进行数学建模则有利于建模者发挥自己的才能。
关于软件有matlab lindo 等