大数据常用模型(大数据、算法、模型)

案例 2019-12-06 15:29:34

统计模型和大数据模型所使用的主要算法有什么异同
1.可视化分析
大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。
2. 数据挖掘算法
大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计 学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如 果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。
3. 预测性分析
大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。
4. 语义引擎
非结构化数据的多元化给数据分析带来新的挑战,我们需要一套工具系统的去分析,提炼数据。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。
5.数据质量和数据管理。 大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。
大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。

大数据的技术
数据采集: ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。
数据存取: 关系数据库、NOSQL、SQL等。
基础架构: 云存储、分布式文件存储等。
数据处理: 自然语言处理(NLP,Natural Language Processing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机”理解”自然语言,所以自然语言处理又叫做自然语言理解也称为计算语言学。一方面它是语言信息处理的一个分支,另一方面它是人工智能的核心课题之一。
统计分析: 假设检验、显著性检验、差异分析、相关分析、T检验、 方差分析 、 卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、 因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。
数据挖掘: 分类 (Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity grouping or association rules)、聚类(Clustering)、描述和可视化、Description and Visualization)、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)
模型预测 :预测模型、机器学习、建模仿真。
结果呈现: 云计算、标签云、关系图等。

大数据的处理
1. 大数据处理之一:采集
大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的 数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除 此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。
在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户 来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间 进行负载均衡和分片的确是需要深入的思考和设计。
2. 大数据处理之二:导入/预处理
虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这 些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使 用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。
导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。
3. 大数据处理之三:统计/分析
统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通 的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于 MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。
统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。
4. 大数据处理之四:挖掘
与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数 据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于 统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并 且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。

整个大数据处理的普遍流程至少应该满足这四个方面的步骤,才能算得上是一个比较完整的大数据处理。
大数据、算法、模型
1 大数据的发展概述
大数据指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。大数据包括海量的数据信息与高强度的数据处理能力,大数据是相对于传统数据处理应用程序来说,不足以处理大型、复杂的数据集的新型处理模式,包括分析、捕获、数据整理、搜索、共享、存储、传输、可视化查询、更新和信息管理。大数据通常仅指使用预测分析、用户行为分析或某些其他高级数据的分析方法,这些方法从数据中提取价值,很少涉及特定大小的数据集。数据集分析可以发现新的联系与信息。科学家、企业高管、医学从业者、广告和政府都定期在互联网搜集大数据,这些数据在金融、城市信息学和商业信息学等领域更为重要。科学家在电子科学工作中遇到了很多需要处理海量数据的问题,涉及气象学、基因组学、复杂物理模拟、生物学和环境研究等。大数据包括文本、图像、音频、视频,它通过数据融合可以完成未来数据的机器学习,大数据通常是数字交互的无成本的产品。越来越成熟的概念更清楚地描述了大数据和人工智能之间的区别,人工智能使用具有高信息密度的数据的描述性统计来测量事物、检测趋势等。大数据使用归纳统计和来自非线性系统识别的概念,从具有低信息密度的大量数据集中推断出法则,例如回归、非线性关系和因果效应,以揭示关系和依赖性或者进行结果和行为的预测。
2 大数据技术中的算法分析
2.1 神经网络算法
神经网络系统是由众多的神经元可调的连接权值连接而成,具有大规模并行处理、分布式信息存储、良好的自组织自学习能力等特点。神经网络是一种计算方法,基于神经单元的大集合,解决由轴突连接的生物神经元的大群集的问题。 每个神经单元与许多其他神经单元连接,并且可以对所连接的神经单元的激活状态影响中实施抑制。每个单独的神经单元可以具有将所有其输入的值组合在一起的求和功能。在每个连接和单元本身上可以存在阈值函数或限制函数,使得信号在传播到其他神经元之前必须超过极限。这些系统是自学习和训练的,而不是明确编程的,并且在传统计算机程序中难以表达的,这种方案在特征检测领域中效果很好。神经网络的目标是以与人类大脑相同的方式解决问题,现代神经网络项目通常使用几千到几百万个神经单元和数百万的连接, 这比人类大脑的复杂性还要少几个数量级,更接近于蠕虫的计算能力。 为了训练它们,通常发生几千次交互循环。 神经网络已被用于解决使用普通的基于规则的编程难以解决的各种各样的任务,如智能化学习。历史上,神经网络模型的使用向高级人工智能的方向移动,其特征在于包含在具有一些动力系统的认知模型的参数中的知识。
2.2 灰色关联度分析
灰色关联分析方法,是根据因素之间发展趋势的相似或相异程度,来进行归纳和评价,作为衡量因素间关联程度的一种方法。灰色关联度分析使用特定的信息概念。它定义没有信息为黑色的情况以及具有完美信息为白色的情况,这些理想化的情况都不会出现在现实世界的问题中。事实上,这些过渡阶段的情况被描述为灰色。因此,灰色系统意味着其中部分信息是已知的并且部分信息是未知的系统。根据这个定义,信息质量形成从信息的缺乏到完整信息的存在过渡过程。由于不确定性总是存在,灰色分析可以得出一系列关于解决方案的清晰陈述。在一个极端情况下,这种方案无解,在另一个极端情况下,具有完美信息的系统具有独特的解决方案。在中间情况中,灰色系统将给出各种优化的解决方案。灰色分析试图找到最好的解决方案,提供了确定一个好的解决方案的技术来解决现实世界的问题。
3 大数据平台的设计
3.1 平台层
大数据分布式存储系统:研究大规模、非结构化数据的存储问题,突破大数据的存储、管理和高效访问关键技术,当前需要构建至少 PB 级存储能力的大数据平台才能满足一般的科研和应用需求。
分布式数据挖掘运行时系统:突破 MapReduce 技术的局限,研究有效支持迭代、递归、层次及集成机制的海量数据挖掘编程模型和运行时系统,构建大数据运行时系统。
3.2 功能层
高可扩展性大数据挖掘算法:基于云计算的分布式大数据处理与挖掘算法,构建高可扩展的大数据处理与挖掘算法库,实现 TB 级数据的建模能力。
分布式工作流引擎:基于云计算的分布式工作流调度、负载均衡技术,构建高效分布式工作流执行引擎。
交互式可视化分析技术:启发式、人机交互、可视化数据挖掘新技术,实现大数据挖掘的高度人机交互功能。
3.3 服务层
基于 Web 的大数据挖掘技术:Web 的大数据挖掘方法和流程,实现易于使用的基于 Web 的大数据挖掘技术,构建基于 Web 的大数据分析环境。
基于Open API 的大数据挖掘技术:Open API 的大数据挖掘方法,研究大数据挖掘开放接口、开放流程,构建基于 Open API 的大数据分析模式。
4 大数据算法的应用分析
4.1 数据挖掘
数据挖掘是发现大数据数据规律的计算过程,涉及人工智能、机器学习、统计和数据库系统结合的方法,它是一个跨学科的计算机科学子领域。数据挖掘过程的总体目标是从数据集中提取信息并将其转换为可以理解的结构以供进一步使用。除了原始数据分析外,它涉及数据库和数据管理方面、数据预处理、模型和推理、复杂性考虑、结构整合处理、可视化和在线更新。数据挖掘是一个热门的领域,并且经常应用于各种形式的大规模数据或信息处理,主要包括收集、提取、存储、分析和统计以及计算机决策支持系统的应用,包括人工智能、机器学习和商业智能。实际的数据挖掘任务是大量数据的自动或半自动分析,从而提取先前未知的数据存在模式,例如聚类分析、异常数据检测和关联规则挖掘、顺序模式分析等,这通常涉及使用诸如数据索引的数据库技术。数据收集、数据准备或结果解释和报告都不是数据挖掘步骤的一部分,但是作为附加步骤属于整个数据挖掘过程。数据挖掘、数据捕获和数据窥探是指使用数据挖掘方法对较大数据集的部分进行抽样分析。虽然这些数据集太小,不足以进行可靠的统计推断以得出更多有价值的信息。然而,这些方法可以用于创建新的假设,以测试更大的数据群体。
4.2 机器学习
机器学习是计算机科学的子领域,它使计算机能够学习而不用明确编程。从模式识别和计算学习理论在人工智能的研究演变而来,机器学习探索学习对数据进行预测算法的研究和构建,这样的算法克服了严格的静态程序指令数据驱动的预测或决策,通过从样本输入来建立一个模型。机器学习在一系列计算任务中使用,其中有着明确算法的设计和编程是不可行的,比如垃圾邮件过滤、检测网络入侵者或恶意内部人员、光学字符识别、搜索引擎和计算机视觉,这些方面都没有明确的算法表示。机器学习与计算统计密切相关,并且经常与计算统计重叠,计算统计也集中在通过使用计算机的预测中。它与数学优化有着紧密的联系,它将方法、理论和应用领域传递到现场。机器学习有时与数据挖掘相结合,后者的子领域更侧重于探索性数据分析。机器学习也可以是全自动化的,用来学习和建立各种实体的行为预测,然后用于发现有价值的异常情况。在数据分析领域,机器学习是一种用于设计适合预测的复杂模型和算法的方法,在商业应用中,这被称为预测分析。这些分析模型允许研究人员、数据科学家、工程师和分析师通过学习数据中的历史关系和趋势来产生可靠的、可重复的决策和结果并揭示隐藏的规律。
5 总结与展望
大数据技术算法的创新是一条光明而曲折的路,在这条路上会出现很多难题与挑战,这个任务长期而又艰巨,需要结合实际经验,不断地进行总结归纳。为实现自身的长远发展而进行大胆革新,利用创新思维进行现代化建设,从而大踏步地走向智能化的大数据发展目标。

H17-0722现代双门冰箱小冰箱<a href=http://www.moxingzu.com/tag/5283/ target=_blank class=infotextkey>3D模型</a>下载H17-0722现代双门冰箱小冰箱3D模型下载


大数据需要掌握哪些技能

大数据技术体系庞大,包括的知识较多

1、学习大数据首先要学习Java基础

Java是大数据学习需要的编程语言基础,因为大数据的开发基于常用的高级语言。而且不论是学hadoop,

2、学习大数据必须学习大数据核心知识

Hadoop生态系统;HDFS技术;HBASE技术;Sqoop使用流程;数据仓库工具HIVE;大数据离线分析Spark、Python语言;数据实时分析Storm;消息订阅分发系统Kafka等。

3、学习大数据需要具备的能力

数学知识,数学知识是数据分析师的基础知识。对于数据分析师,了解一些描述统计相关的内容,需要有一定公式计算能力,了解常用统计模型算法。而对于数据挖掘工程师来说,各类算法也需要熟练使用,对数学的要求是最高的。

4、学习大数据可以应用的领域

大数据技术可以应用在各个领域,比如公安大数据、交通大数据、医疗大数据、就业大数据、环境大数据、图像大数据、视频大数据等等,应用范围非常广泛。