用opencv做人脸识别 如何识别陌生人?如果某个识别对象和训练库中的某一个很匹配,那么就会有很高的相似度。
如果识别对象不在训练库中,那么就算是返回了结果,相似度也不会很高,只不过是数值上的最优解。
所以,设置一个相似度的阀值(THREADHOLD), 最匹配误差(leastDistSq)大于这个阀值就可以判断为不在训练库中!
...
if ( leastDistSq > THREADHOLD ) {
return -1;
}
return iNearest;
}
用OpenCV开发人脸识别软件,用Java好还是用C/C++好一般地说,用C/C++比较“主流”些,因为C/C++编译后直接生成可执行文件,不需要虚拟机,程序性能比较好。
另一方面,无论用C/C++还是JAVA,使用 OpenCV进行开发的难度和工作量,没有太大的差异。
如果你程序追求性能,建议用C或C++
Z20-1215中式景观雕塑
怎样使用OpenCV进行人脸识别1.环境搭建:
整个项目的结构图:
2.编写DetectFaceDemo.java,代码如下:
package com.njupt.zhb.test;
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.MatOfRect;
import org.opencv.core.Point;
import org.opencv.core.Rect;
import org.opencv.core.Scalar;
import org.opencv.highgui.Highgui;
import org.opencv.objdetect.CascadeClassifier;
//
// Detects faces in an image, draws boxes around them, and writes the results
// to "faceDetection.png".
//
public class DetectFaceDemo {
public void run() {
System.out.println("
Running DetectFaceDemo");
System.out.println(getClass().getResource("lbpcascade_frontalface.xml").getPath());
// Create a face detector from the cascade file in the resources
// directory.
//CascadeClassifier faceDetector = new CascadeClassifier(getClass().getResource("lbpcascade_frontalface.xml").getPath());
//Mat image = Highgui.imread(getClass().getResource("lena.png").getPath());
//注意:源程序的路径会多打印一个‘/’,因此总是出现如下错误
/*
* Detected 0 faces Writing faceDetection.png libpng warning: Image
* width is zero in IHDR libpng warning: Image height is zero in IHDR
* libpng error: Invalid IHDR data
*/
//因此,我们将第一个字符去掉
String xmlfilePath=getClass().getResource("lbpcascade_frontalface.xml").getPath().substring(1);
CascadeClassifier faceDetector = new CascadeClassifier(xmlfilePath);
Mat image = Highgui.imread(getClass().getResource("we.jpg").getPath().substring(1));
// Detect faces in the image.
// MatOfRect is a special container class for Rect.
MatOfRect faceDetections = new MatOfRect();
faceDetector.detectMultiScale(image, faceDetections);
System.out.println(String.format("Detected %s faces", faceDetections.toArray().length));
// Draw a bounding box around each face.
for (Rect rect : faceDetections.toArray()) {
Core.rectangle(image, new Point(rect.x, rect.y), new Point(rect.x + rect.width, rect.y + rect.height), new Scalar(0, 255, 0));
}
// Save the visualized detection.
String filename = "faceDetection.png";
System.out.println(String.format("Writing %s", filename));
Highgui.imwrite(filename, image);
}
}
3.编写测试类:
package com.njupt.zhb.test;
public class TestMain {
public static void main(String[] args) {
System.out.println("Hello, OpenCV");
// Load the native library.
System.loadLibrary("opencv_java246");
new DetectFaceDemo().run();
}
}
//运行结果:
//Hello, OpenCV
//
//Running DetectFaceDemo
///E:/eclipse_Jee/workspace/JavaOpenCV246/bin/com/njupt/zhb/test/lbpcascade_frontalface.xml
//Detected 8 faces
//Writing faceDetection.png